1	Expected answers	Mark	Additional guidance
(a)(i)	A collision with no change / loss of kinetic energy.	B1	Allow coeff't of restitution = 1
(a)(ii)	Any 3 from Volume of particles negligible compared to volume of vessel OR molecules much smaller than distance between them		do not allow a bare "negligible volume of molecules"
	No intermolecular forces acting (other than during collisions) OR molecules only have kinetic energy (and no PE)	B1	Do not allow "collisions between molecules are elastic" because this is given in the question.
	Particles travel in straight lines/at uniform velocity between collisions OR force of gravity on molecules is negligible	B1 B1	do not allow a bare "negligible time of collisions"
	time of collisions much smaller than time between collisions gas consists of a large number of molecules moving randomly (both needed for the mark)		Do not allow a bare "rapid random motion"
(b)(i)	$\Delta p = mv - mu$	C1	
	$= 4.8 \times 10^{-26} [500 - (-500)] = 4.8 \times 10^{-23} \text{ kg m s}^{-1}$	A1	2.4 x 10 ⁻²³ scores zero
(b)(ii)	(time between collisions = $0.4/500 \text{ s}$). Number of collisions/sec. = $500/0.4 = 1250$	A1	Correct answer only
(b)(iii)	(Mean) force = $\Delta p/t$ OR Force = rate of change of momentum OR Impulse = change in momentum Force = $1250 \times 4.8 \times 10^{-23} / 1 = 6.0 \times 10^{-20} \text{ N}$	C1 A1	Allow ecf from (b)(i) and (b)(ii) e.g. if 2500 is used from (b)(i F = 2500x4.8x10 ⁻²³ = 1.2x10 ⁻¹⁹ N and this scores 2 marks
(b)(iv)	Same value as candidate's (b)(iii)	B1	this scores 2 marks
(0)(14)	due to Newton's third law OR this force acts in opposite direction		OR -ve sign shown
(c)(i)	$3 \times 6 \times 10^{23} = 1.8 \times 10^{24}$	B1	1.806 x 10 ²⁴ if 6.02 is used
(c)(ii)	(very) <u>large number</u> of particles that are moving <u>randomly</u> means that at any instant the number of collisions on each face will be the same (WTTE)	B1	Allow no gravitational forces and hence uniform density
(c)(iii)	(mean) KE/speed of molecules increases Increased <u>rate</u> of collisions with wall OR 'harder' collisions with wall	B1 B1	Also allow greater change of momentum per collision (WTTE) Not just "more collisions".
	Total	14	

2	Expected answers	Mark	Additional guidance
(a)(i)	Straight line (judged by eye)with positive slope AND passing through the origin	B1	correct answer only
(a)(ii)	8.31 (J mol ⁻¹ K ⁻¹)	B1	Allow <i>R</i> and molar gas constant, but do not allow <i>pV/T</i> OR <i>nR</i>
(b)(i)	-40 °C = 233 K, AND 250 °C = 523 K	M1	No marks scored if 40° C and/or
	Use of $V_1/T_1 = V_2/T_2$ 2.4 x 10 ⁻² / 233 = V_2 / 523	C1	250°C are used
	$V_2 = 0.053(8) \text{ (m}^3)$	A1	Accept other correct versions.
(b)(ii)	Use of $p = nRT/V = 1.5 \times 8.31 \times 233 / 2.4 \times 10^{-2}$	C1	Allow <i>T</i> = 523 and <i>V</i> = 0.053
	$= 1.21 \times 10^5 (Pa)$	A1	hence $p = 1.2 \times 10^5$
			Allow ecf from (b)(i)
	Total	7	

Question	Expected Answers	Marks	Additional guidance
3 (a)	The magnitude of the impulse on each object is the same	B1	For 3 or 4 ticks mark and deduct
. ,	Total energy is conserved	B1	1 mark for each error.
(b)	Correct use of ½ mv ²	C1	0.27 J scores 1 st mark
	Loss of KE = $0.03(144-81) = 1.9$ (or 1.89) J	A1	Do not allow 1.8
(b) (Change in momentum = $(0.06x12)+(0.06x9) = 1.26$ (Ns)	C1	Award 1 mark for 1.2 N
	Average force=rate of change of momentum = 1.26/0.15 = 8.4 (or 8) N	A1	ignore minus signs
(b) (i	8.4 N (or - 8.4)	B1	Allow ecf from (ii)
(c)	ANY 3 of the following		Allow
	particles move with rapid, random motion (WTTE)	B1	" gravitational force on
	elastic collisions	B1	molecules is negligible"
	negligible (or zero) volume of atoms (compared with volume of container)	B1	Do not allow a bare
	no intermolecular forces (except during collisions)/all internal energy is KE		"large number of particles".
	collision time negligible (compared to time between collision).		
(c) (molecules make collisions with walls/surface (WTTE)	B1	Do not allow a bare "molecules
() ((hence) exerts a force on the wall (or each collision has a change of		collide with each other"
	momentum)	B1	
	Pressure = force/area	B1	
	Total	13	

Question	Expected Answers	Marks	Additional guidance
4 (a) (i)	Brownian (motion) (QWC mark)	B1	QWC Brownian spelled correctly
(a) (ANY two from the following three: air molecules are moving in different directions/randomly with different speeds mass/size of air molecules is smaller than smoke particles	B1 B1	Answers that refer to smoke particles only cannot score the marks.
(b)	vol = $(4/3) \pi r^3 = 5.58 \times 10^{-3}$ correct sub into pV = nRT i.e. with T as 290K n = $(2.6 \times 10^5 \times 5.58 \times 10^{-3})/8.31 \times 290 = 0.602$ moles mass = n x 0.028 = 0.0169 kg (0.016856)	C1 C1 A1 A1	Allow ecf for wrong volume Allow use of pV = NkT and n = N/N _A Allow ecf for cand's value for n If 17° C used allow maximum of 2 marks for n = 10.3 moles and m = 0.29 kg
(b) (ii	no net heat flow between objects (WTTE)	B1	Allow "they are at the same temp."
(b) (ii	correct use of P/T = constant: e.g. P = $(273/290) \times 2.6 \times 10^5$ P = $\mathbf{2.45 \times 10^5}$ (or 2.4×10^5 or 2.5×10^5)Pa	C1 A1	Allow correct use of pV=nRT
	Tota	al 10	